Introduction to Rational Functions

Even Function – A function where f(x) = f(-x) for all x in the domain of f(x).

Odd Function – A function where f(-x) = -f(x) for all x in the domain of f(x).

We will start by reviewing what the "classic curves" look like.

Equation	Critical Points	Asymptotes	Even or Odd?	Sketch
$y = x^2$	(0,0)		even	
$y = x^3$	(0,0)		odd	
$y = \sqrt{x}$	(0,0)	/	N/A	
$y=\sqrt[3]{x}$	(0,0)		odd	
$y = \frac{1}{x}$	none	x=0 y=0	odd	
$y = \frac{1}{x^2}$	none	x=0 y=0	Even	
$y = \frac{1}{x^3}$	none	x=0 /=0	odd	

Rational Functions

We will spend a lot of time this unit exploring graphs of rational functions. A rational function is a function that has the form $f(x) = \frac{g(x)}{h(x)}$ where g(x) and h(x) are polynomials and $h(x) \neq 0$.

**Note in the case where h(x) = k (where k is a constant) really means that f(x) reduces to a polynomial function. **

Reciprocal Functions

If $f(x) = \frac{g(x)}{h(x)}$ and g(x) = 1, then $f(x) = \frac{1}{h(x)}$ and f(x) can be treated as the reciprocal function of h(x). We have already looked at graphing functions of this form and we will review this concept.

Examples

$$f(x) = \frac{1}{x^2 - 1}$$

$$\frac{2}{(x-1)(x+1)}$$

$$f(x) = \frac{1}{x^3 - 4x}$$

$$\lambda = \times (\times -5)(\times +5)$$

$$\lambda = \times (\times_5 - 4) + \times$$

$$\lambda = \times_3 - 4 \times$$

$$f(x) = \frac{1}{\sqrt{x+1}-2}$$

$$y = \sqrt{x+1} - 2$$

Problem Set

1. Examine each equation below. Classify the function as even, odd or neither.

a)
$$f(x) = x^2 - 3x^4$$
 b) $y = -\sqrt[5]{x^2}$

b)
$$y = -\sqrt[5]{x^2}$$

c)
$$y = \frac{1}{x^2 + 2x}$$

d)
$$g(x) = \sin x$$
 e) $y = \cos x$

e)
$$y = \cos x$$

f)
$$f(x) = \frac{2x}{3x^2-5}$$
 g) $y = 2x+3$

g)
$$y = 2x + 3$$

 $\bigcap e : + \bigcup e = -$

2. Graph each function f(x). Then graph the reciprocal function $y = \frac{1}{f(x)}$.

a)
$$f(x) = |x| - 4$$
 b) $f(x) = 2x - 4$

b)
$$f(x) = 2x -$$

$$c) f(x) = x^2 + 1$$

$$d) f(x) = x^2 - 9$$

e)
$$f(x) = \log x$$

- 3. Explain why the graph of $f(x) = \frac{a}{bx+c}$ must have a vertical asymptote. (a, b and c are real number constants).
- 4. Let $f(x) = \frac{a}{bx^2 + cx + d}$ where a, b, c and d are real number constants. Under what conditions will f(x) have no vertical asymptotes? 1 vertical asymptotes? 2 vertical asymptotes?
- 5. A graph is shown below. Find a possible equation for the graph in the form $f(x) = \frac{a}{bx^2 + cx + a}$.

- 6. a) Sketch the graph of $f(x) = x^3 + 4x^2 + 4x$, by finding all intercepts and turning points. (great exam review).
 - b) Use your answer to part a) to sketch the graph of $g(x) = \frac{1}{x^3 + 4x^2 + 4x}$.

ANSWERS

- 1. a) even b) even c) neither d) odd e) even f) odd g) neither
- 2. you will verify your answers tomorrow. 5. $y = \frac{-6}{2x^2 x 15}$ 6. Verify tomorrow.