Introduction to Rational Functions

Even Function - A function where $f(x)=f(-x)$ for all x in the domain of $f(x)$.
Odd Function - A function where $f(-x)=-f(x)$ for all x in the domain of $f(x)$.
We will start by reviewing what the "classic curves" look like.

Equation	Critical Points	Asymptotes	Even or Odd?	
$y=x^{2}$				Sketch
$y=x^{3}$				
$y=\sqrt{x}$				
$y=\sqrt[3]{x}$				
$y=\frac{1}{x}$				
$y=\frac{1}{x^{3}}$				

Rational Functions

We will spend a lot of time this unit exploring graphs of rational functions. A rational function is a function that has the form $f(x)=\frac{g(x)}{h(x)}$ where $g(x)$ and $h(x)$ are polynomials and $h(x) \neq 0$.
${ }^{* *}$ Note in the case where $\mathrm{h}(\mathrm{x})=\mathrm{k}$ (where k is a constant) really means that $f(x)$ reduces to a polynomial function. **

Reciprocal Functions

If $f(x)=\frac{g(x)}{h(x)}$ and $g(x)=1$, then $f(x)=\frac{1}{h(x)}$ and $f(x)$ can be treated as the reciprocal function of $h(x)$. We have already looked at graphing functions of this form and we will review this concept.

Examples

$f(x)=\frac{1}{x^{2}-1}$

$$
f(x)=\frac{1}{x^{3}-4 x}
$$

$$
f(x)=\frac{1}{\sqrt{x+1}-2}
$$

(bring headphones to class tomorrow if possible).

Problem Set

1. Examine each equation below. Classify the function as even, odd or neither.
a) $f(x)=x^{2}-3 x^{4}$
b) $y=-\sqrt[5]{x^{2}}$
c) $y=\frac{1}{x^{2}+2 x}$
d) $g(x)=\sin x$
e) $y=\cos x$
f) $f(x)=\frac{2 x}{3 x^{2}-5}$
g) $y=2 x+3$
2. Graph each function $f(x)$. Then graph the reciprocal function $y=\frac{1}{f(x)}$.
a) $f(x)=|x|-4$
b) $f(x)=2 x-4$
c) $f(x)=x^{2}+1$
d) $f(x)=x^{2}-9$
e) $f(x)=\log x$
3. Explain why the graph of $f(x)=\frac{a}{b x+c}$ must have a vertical asymptote. (a, b and c are real number constants).
4. Let $f(x)=\frac{a}{b x^{2}+c x+d}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are real number constants. Under what conditions will $f(x)$ have no vertical asymptotes? 1 vertical asymptote? 2 vertical asymptotes?
5. A graph is shown below. Find a possible equation for the graph in the form $f(x)=\frac{a}{b x^{2}+c x+d}$.

6. a) Sketch the graph of $f(x)=x^{3}+4 x^{2}+4 x$, by finding all intercepts and turning points. (great exam review).
b) Use your answer to part a) to sketch the graph of $g(x)=\frac{1}{x^{3}+4 x^{2}+4 x}$.

ANSWERS

1. a) even b) even c) neither d) odd e) even f) odd g) neither
2. you will verify your answers tomorrow. 5. $y=\frac{-6}{2 x^{2}-x-15} 6$. Verify tomorrow.
