Unit 6 Geometry Package

MPM1D

The basic elements of any geometric figure are points and lines. When lines intersect at a point, angles are formed.

Q

Angles can be classified according to their measures in degrees.

Triangles can be classified according to the measure of their angles.

Triangles can also be classified according to the measures of their sides.

| Scalene triangle
 No sides have
 equal measures. | lsosceles triangle
 Two sides have
 equal measures. |
| :--- | :--- | :--- |

Two angles whose measures add to 90° are called complementary. Two angles whose measures add to 180° are called supplementary.

Theorems in Euclidean Geometry

The following is a list of "theorems" (rules) explored long ago by a Greek mathematician named Euclid.

Theorem	
When two lines Opposite Angle Theorem (OAT)	
intersect the opposite	
angles formed are	
equal to each other.	

Parallel Line Theorems

A line that intersects two parallel lines is called a transversal. A transversal creates 8 angles. These angles have the following patterns.

Alternate Angles Z-Pattern (PLT - Z)	
Corresponding Angles F-Pattern (PLT-F)	
Interior Angles C-Pattern (PLT-C)	

Problems

1. Find the value of x in each diagram.
(a)

(b)

(c)

(d)

(e)

(f)

2. Find measures in each of the following. (Be sure to give reasons for your answers)
(a)

(b)

3. Find the measures of angles <QPR and <QRP in each diagram below.
(a)

(b)

4. Find the missing measures. Give reasons.
(a)

(b)

(c)

5. Find the measures of p and q in each figure below.

(b)

6. Find the missing measures in each figure.

b)

c)

d)

7. Find the measures of all missing angles in the diagram below. Give reasons.

Final Answers

$\begin{array}{llllll}\text { 1. a) } 23^{\circ} & \text { b) } 109^{\circ} & \text { c) } 30^{\circ} & \text { d) } 50^{\circ} & \text { e) } 22.5^{\circ} & \text { f) } 35^{\circ} \\ \text { 2. a) } x=110, ~ & y=70 \text { b) } x=50, y=130 \text { c) } x=62 & \text { d) } x=115 \quad 3 . ~ a) ~ & 65^{\circ}, 50^{\circ} \text { b) }\end{array}$ $70^{\circ}, 70^{\circ}$ 4. a) $a=65, b=50, c=50, d=130, e=130$ b) $a=55, b=55, c=35, d=110, e=35 c) a=42, b=48, c=41, d=$ 35 5. a) $p=60, q=50$ b) $p=40, q=100$ c) $p=54, q=108$ d) $p=21, q=105$ 6. a) $a=40, b=115, c=105, d=75$, e $=65$ b) $a=35, b=145, c=90, d=90, e=55$ c) $a=56, b=68, c=56, d=56 d) a=55, b=125, c=55, d=125 e) y=75$, $z=75, x=15$ 7. $\angle A E B=65^{\circ}, \angle A C D=65^{\circ}, \angle A D C=65^{\circ}, \angle B A E=50^{\circ}, \angle A E F=115^{\circ}, \angle A D G=115^{\circ}, \angle C B E=115^{\circ}, \angle B E D=115^{\circ}$, $<$ FED $=65^{\circ}$,

