## Final Exam Outline - MHF4U

## Unit 1 - Polynomial Functions

- Composite Functions
- Division of Polynomial Expressions (long or synthetic division)
- Factoring Polynomials using the Factor Theorem
- Factoring Difference and Sum of Cubes
- Solving Polynomial Equations
- Sketching Polynomial Functions
- Finding Equation of a Polynomial Function (given zeroes or points - including complex roots)
- Solving Polynomial Inequalities (using a graph or table)


## Unit 2 - Limits \& Introduction to Calculus

- Evaluating Limits (using substitution, multiplying by conjugate, replacing variable)
- Slopes of Secants and Tangents (what each represents)
- Finding Derivatives Using Shortcuts (sum, product and constant rules)
- Finding Equation of a Tangent Line
- Using Calculus to Sketch Functions (critical points, end behaviour)
(no $1^{\text {st }}$ principles on final exam)


## Unit 3 - Logarithmic Functions

- Exponential Growth/Decay (compound interest, half-life, etc)
- Sketching Exponential Functions
- Finding the Inverse of an Exponential Function and Logarithmic Function
- Sketching Logarithmic Functions
- Laws of Logarithms
- Solving Exponential Equations
- Solving Logarithmic Equations


## Unit 4 - Trigonometry

- Radian Measure, arc length, etc.
- Sketching Primary Trigonometric Functions and Word Problems based on graphs of sine and cosine.
- Sketching Graphs of Reciprocal Trigonometric Equations.
- Addition/Subtraction Identities
- Double Angle Identities
- Proving Trigonometric Identities
- Solving Trigonometric Equations


## Unit 5 - Rational Functions

- Determining end behaviour of rational functions (using limits)
- Sketching Sums of Functions given Graphs
- Sketching Rational Functions as a Sum of Functions (from equation) using:
- Using long/synthetic division
- Using partial fractions
- By graphing the reciprocal function
- Solving Rational Equalities
- Solving Rational Inequalities

Provided exam formulae:

$$
\begin{array}{ll}
\cos (A+B)=\cos A \cos B-\sin A \sin B & \sin 2 x=2 \sin x \cos x \\
\cos (A-B)=\cos A \cos B+\sin A \sin B & \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
\sin (A+B)=\sin A \cos B+\cos A \sin B & \\
\sin (A-B)=\sin A \cos B-\cos A \sin B &
\end{array}
$$

