MCV4U

Introduction to Vectors

Lesson 1

A scalar is a quantity having magnitude only.

Examples: any real number. Speed (tn/h)

Mass (kg)

A **vector** refers to a quantity that has both *magnitude* and *direction*.

Examples: Velocity eg- 45 th North

forces

We will begin this course by representing vectors geometrically. They are represented as a line segme

with direction (a directed line segment).

How do we express:

The magnitude of a vector?

equal to lenyth of the ling segment. Examples: Find $|\vec{u}|$ in each of the following.

a)

The direction of a vector?

direction it makes with respect to another vector or coordinate system.

direction between 2 vectors is angle made when vectors are placed tail-to-tail

$$\frac{|\mathcal{I}|}{4} = \frac{5}{2}$$

$$|\vec{u}|^2 = 5.1^2 + 7.3^2 - 2(5.1)(2.5)(0.534)^6$$

 $|\vec{u}| = 3.4$

Equality of Vectors

Two vectors, \vec{u} and \vec{v} are equal if and only if:

and

We can then say that: $\sqrt[3]{a} = \sqrt[3]{3}$

The Negative of a Vector

The negative of a vector is a vector with the same magnitude but opposite direction.

We can say that the negative of \overrightarrow{AB} \overrightarrow{B} \overrightarrow{B} \overrightarrow{B}

The Zero Vector

The zero vector has a magnitude of zero. Its direction is undefined.

Example: In parallelogram ABCD, find a vector equal to:

d)
$$\overrightarrow{AB}$$

e) \overrightarrow{CB}

Scalar Multiplication

Recall that a scalar quantity can be any real number.

A vector \vec{v} can be multiplied by a scalar, k, to produce a new vector $k\vec{v}$ such that:

Example: Given M is the midpoint of \overrightarrow{AB} , express each vector below as a scalar multiply of another. (Label the diagram first)

a)
$$\overrightarrow{AB} = 2 \overrightarrow{AM}$$

$$= 2 \overrightarrow{AM}$$

$$= 2 \overrightarrow{AM}$$

$$= -1 \overrightarrow{AM}$$

$$= -1 \overrightarrow{AM}$$

Example ABCD is a parallelogram with X and Y as midpoints of AB and AD, respectively. If $\vec{u} = \overrightarrow{BX}$ and $\vec{v} = \overrightarrow{AY}$ express the following in terms of \vec{u} and \vec{v} .

a)
$$\overrightarrow{AD} = 2 \overrightarrow{\vee}$$

b)
$$\vec{X}\vec{A} = \vec{\lambda}$$

c)
$$\vec{c}\vec{D} = 2\vec{\lambda}$$

d)
$$\overrightarrow{CB} = -2\sqrt{3}$$

text page 121 # 1 - 6 $\,$ and text page 127 $\#2,\,8abce,\,9$