A **scalar** is a quantity having *magnitude* only.

Examples:

A **Vector** refers to a quantity that has both *magnitude* and *direction*.

Examples:

We will begin this course by representing vectors *geometrically*. They are represented as a line segment with direction (a *directed line segment*).

>

How do we express:

The magnitude of a vector?

The direction of a vector?

Examples: Find $|\vec{u}|$ in each of the following.

a)

Equality of Vectors

Two vectors, \vec{u} and \vec{v} are equal if and only if:

1)

2)

We can then say that:

The Negative of a Vector

The negative of a vector is a vector with the **same magnitude** but **opposite direction**.

We can say that the negative of \overrightarrow{AB}

The Zero Vector

The zero vector has a magnitude of zero. Its direction is undefined.

Example: In parallelogram ABCD, find a vector equal to:

a) \overrightarrow{AB} b) \overrightarrow{DA} c) $-\overrightarrow{CD}$

Find vectors equal to the negative of:

d) \overrightarrow{AB}

Scalar Multiplication

Recall that a scalar quantity can be any real number.

A vector \vec{v} can be multiplied by a scalar, *k*, to produce a new vector $k\vec{v}$ such that:

1)

2)

Example: Given M is the midpoint of \overrightarrow{AB} , express each vector below as a scalar multiply of another. (Label the diagram first)

Example ABCD is a parallelogram with X and Y as midpoints of AB and AD, respectively. If $\vec{u} = \overrightarrow{BX}$ and $\vec{v} = \overrightarrow{AY}$ express the following in terms of \vec{u} and \vec{v} .

