A SCalar is a quantity having magnitude only.

Examples:

A Vector refers to a quantity that has both magnitude and direction.

Examples:

We will begin this course by representing vectors geometrically. They are represented as a line segment with direction (a directed line segment).

How do we express:
The magnitude of a vector?
The direction of a vector?

Examples: Find $|\vec{u}|$ in each of the following.
a)

Equality of Vectors

Two vectors, \vec{u} and \vec{v} are equal if and only if:
1)
2)

We can then say that:

The Negative of a Vector
The negative of a vector is a vector with the same magnitude but opposite direction.
We can say that the negative of $\overrightarrow{A B}$

The Zero Vector

The zero vector has a magnitude of zero. Its direction is undefined.
Example: In parallelogram $A B C D$, find a vector equal to:
a) $\overrightarrow{A B}$
b) $\overrightarrow{D A}$
c) $-\overrightarrow{C D}$

Find vectors equal to the negative of:
d) $\overrightarrow{A B}$
e) $\overrightarrow{C B}$

Scalar Multiplication

Recall that a scalar quantity can be any real number.
A vector \vec{v} can be multiplied by a scalar, k, to produce a new vector $k \vec{v}$ such that:
1)
2)

Example: Given M is the midpoint of $\overrightarrow{A B}$, express each vector below as a scalar multiply of another. (Label the diagram first)
A

a) $\overrightarrow{A B}=$
b) $\overrightarrow{B M}=$

Example ABCD is a parallelogram with X and Y as midpoints of $A B$ and AD, respectively. If $\vec{u}=\overrightarrow{B X}$ and $\vec{v}=\overrightarrow{A Y}$ express the following in terms of \vec{u} and \vec{v}.
a) $\overrightarrow{A D}$
b) $\overrightarrow{X A}$
c) $\overrightarrow{C D}$
d) $\overrightarrow{C B}$

