Operations with Algebraic Vectors

Most of the operations for algebraic vectors below are defined for vectors in R^3 . It should be simple to apply these definitions to vectors in R^2 as well.

Vector Equality - Let $\vec{u} = (a_1, b_1, c_1)$ and $\vec{v} = (a_2, b_2, c_2)$. We say that $\vec{u} = \vec{v}$ if and only if

Scalar Multiplication

Let $\vec{v} = (a, b, c)$ be any vector in R³. Given scalar $k \in R$ then:

 $k\vec{v} =$

Vector Addition/Subtraction

How do we add two algebraic vectors?

Let $\vec{u} = (a_1, b_1, c_1)$ and $\vec{v} = (a_2, b_2, c_2)$

 $\vec{u} + \vec{v} =$

Example: Given $\vec{u} = (3,1,0)$ and $\vec{v} = (1,-1,3)$ Find $3\vec{u} + 4\vec{v}$:

Vector Joining 2 Points

Often we want to define an algebraic vector that goes through to points.

In R²: The point-to-point vector \overrightarrow{PQ} for points P(a₁, b₁) and Q(a₂, b₂) is given by:

In R³: The point-to-point vector \overrightarrow{PQ} for points P(a₁, b₁, c₁) with Q(a₂, b₂, c₂) is given by:

Parallel Vectors

Two vectors \vec{u} and \vec{v} are parallel if and only if:

Example: Determine whether $\overrightarrow{AB} | | \overrightarrow{CD}$ given A(2,0), B(3,6), C(3, 1) and D(5,-5).

We call parallel vectors "collinear". Collinear refers to the fact that they can be drawn on the same line.

Collinear

Three points, A, B and C are collinear if and only if $\overrightarrow{AB} = k\overrightarrow{BC}$ for some $k \in R$.

Example: Determine whether or not the points A(9, -6, 15), B(-3, 2, -5) and C(6, -4, 10) are collinear.

Unit Vectors

A unit vector has a magnitude of one unit. It is denoted by the ^ symbol.

Any vector \vec{v} , can be expressed as a scalar product of its magnitude and a unit vector having the same direction.

 $\vec{v} =$

Example: given $\vec{v} = (4,3)$:

We can rearrange this definition of a vector to derive a **definition of a unit vector**.

So we can use the above process to make a vector into a unit vector having the same direction. We call this **normalizing a vector**.

Example: Normalize the vector $\vec{v} = (2, -3, -6)$

So if we travel one unit from the origin along the vector \vec{v} , we will be at point:

Note that the components of a unit vector v, are also the direction cosines for any vector that is a multiple of v! This tells us that:

Use algebraic vectors (i.e. components) to prove the distributive law for vector addition/scalar multiplication. i.e. prove that $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$

Unit Vector Notation

We define 3 standard unit vectors in the direction of x, y and z axes.

In R²:

In R³:

Any algebraic vector can be defined in either component form or in unit vector notation.

Examples

(4, -8)

(1, -2, 7)

Page 166 #4 – 5, 18

page 172 #2aceh, 3cd, 4ae, 5d, 6-10, 12