Operations with Algebraic Vectors

Most of the operations for algebraic vectors below are defined for vectors in R^{3}. It should be simple to apply these definitions to vectors in $\mathbf{R}^{\mathbf{2}}$ as well.

Vector Equality - Let $\vec{u}=\left(a_{1}, b_{1}, c_{1}\right)$ and $\vec{v}=\left(a_{2}, b_{2}, c_{2}\right)$. We say that $\vec{u}=\vec{v}$ if and only if

Scalar Multiplication

Let $\vec{v}=(a, b, c)$ be any vector in R^{3}. Given scalar $k \in R$ then:
$k \vec{v}=$

Vector Addition/Subtraction

How do we add two algebraic vectors?
Let $\vec{u}=\left(a_{1}, b_{1}, c_{1}\right)$ and $\vec{v}=\left(a_{2}, b_{2}, c_{2}\right)$
$\vec{u}+\vec{v}=$

Example: Given $\vec{u}=(3,1,0)$ and $\vec{v}=(1,-1,3)$ Find $3 \vec{u}+4 \vec{v}$:

Vector Joining 2 Points

Often we want to define an algebraic vector that goes through to points.
In R^{2} : The point-to-point vector $\overrightarrow{P Q}$ for points $\mathrm{P}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$ is given by:

In R^{3} : The point-to-point vector $\overrightarrow{P Q}$ for points $\mathrm{P}\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right)$ with $\mathrm{Q}\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right)$ is given by:

Parallel Vectors

Two vectors \vec{u} and \vec{v} are parallel if and only if:

Example: Determine whether $\overrightarrow{A B} \| \overrightarrow{C D}$ given $\mathrm{A}(2,0), \mathrm{B}(3,6), \mathrm{C}(3,1)$ and $\mathrm{D}(5,-5)$.

We call parallel vectors "collinear". Collinear refers to the fact that they can be drawn on the same line.

Collinear

Three points, A, B and C are collinear if and only if $\overrightarrow{A B}=k \overrightarrow{B C}$ for some $k \in R$.
Example: Determine whether or not the points $\mathrm{A}(9,-6,15), \mathrm{B}(-3,2,-5)$ and $\mathrm{C}(6,-4,10)$ are collinear.

Unit Vectors

A unit vector has a magnitude of one unit. It is denoted by the ${ }^{\wedge}$ symbol.

Any vector \vec{v}, can be expressed as a scalar product of its magnitude and a unit vector having the same direction.

$$
\vec{v}=
$$

Example: given $\vec{v}=(4,3)$:

We can rearrange this definition of a vector to derive a definition of a unit vector.

So we can use the above process to make a vector into a unit vector having the same direction. We call this normalizing a vector.

Example: Normalize the vector $\vec{v}=(2,-3,-6)$

So if we travel one unit from the origin along the vector \vec{v}, we will be at point:

Note that the components of a unit vector v, are also the direction cosines for any vector that is a multiple of v ! This tells us that:

Use algebraic vectors (i.e. components) to prove the distributive law for vector addition/scalar multiplication. i.e. prove that $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$

Unit Vector Notation

We define 3 standard unit vectors in the direction of x, y and z axes.
In R^{2} :
In R^{3} :

Any algebraic vector can be defined in either component form or in unit vector notation.

Examples

$(4,-8) \quad(1,-2,7)$

Page 166 \#4-5, 18
page 172 \#2aceh, 3cd, 4ae, 5d, 6-10, 12

