MCV4U

Lesson 6

Operations with Algebraic Vectors

Most of the operations for algebraic vectors below are defined for vectors in R³. It should be simple to apply these definitions to vectors in R² as well.

Vector Equality - Let $\vec{u}=(a_1,b_1,c_1)$ and $\vec{v}=(a_2,b_2,c_2)$. We say that $\vec{u}=\vec{v}$ if and only if

$$Q_1 = Q_2$$

Scalar Multiplication

Let $\vec{v} = (a, b, c)$ be any vector in R³. Given scalar $k \in R$ then:

Vector Addition/Subtraction

How do we add two algebraic vectors?

Let
$$\vec{u} = (a_1, b_1, c_1)$$
 and $\vec{v} = (a_2, b_2, c_2)$

$$\vec{u} + \vec{v} = (\alpha_1 + \alpha_2) b_1 + b_2$$

Example: Given $\vec{u} = (3,1,0)$ and $\vec{v} = (1,-1,3)$ Find $3\vec{u} + 4\vec{v}$:

$$= 3(3,1,0) + 4(1,-1,3)$$

$$=(9,3,0)+(4,-4,12)$$

$$=(13,-1,12)$$

Vector Joining 2 Points

Often we want to define an algebraic vector that goes through to points.

In R²: The point-to-point vector \overrightarrow{PQ} for points P(a₁, b₁) and Q(a₂,b₂) is given by:

In R³: The point-to-point vector \overrightarrow{PQ} for points P(a₁, b₁, c₁) with Q(a₂,b₂, c₂) is given by:

$$PQ = (a_2 - a_1, b_2 - b_1, c_2 - c_1)$$

Collincar

Parallel Vectors

Two vectors \vec{u} and \vec{v} are parallel if and only if:

Example: Determine whether $\overrightarrow{AB} \mid \mid \overrightarrow{CD}$ given A(2,0), B(3,6), C(3, 1) and D(5,-5).

We call parallel vectors "collinear". Collinear refers to the fact that they can be drawn on the same line.

Collinear

Three points, A, B and C are collinear if and only if $\overrightarrow{AB} = k\overrightarrow{BC}$ for some $k \in R$.

Example: Determine whether or not the points A(9, -6, 15), B(-3, 2, -5) and C(6, -4, 10) are collinear.

$$\overrightarrow{AB} = (-12, 8, -20) \quad \overrightarrow{BC} = (9, -6, 15)$$

$$\overrightarrow{AB} = k \overrightarrow{CD} \quad \text{for some } k \in \mathbb{R}$$

$$(-12, 8, -20) = k \quad (9, -6, 15)$$

Unit Vectors

A unit vector has a magnitude of one unit. It is denoted by the ^ symbol.

cos2 x + (03 p + (0) Y = 1

Any vector \vec{v} , can be expressed as a scalar product of its magnitude and a unit vector having the same direction.

$$\vec{v} = \left| \begin{array}{c} \checkmark \\ \checkmark \end{array} \right| \left| \begin{array}{c} \checkmark \\ \checkmark \end{array} \right|$$

Example: given $\vec{v} = (4,3)$:

We can rearrange this definition of a vector to derive a definition of a unit vector.

$$\Rightarrow$$
 $\hat{\nabla} = \frac{\vec{y}}{|\vec{y}|}$

So we can use the above process to make a vector into a unit vector having the same direction. We call this normalizing a vector.

Example: Normalize the vector $\vec{v} = (2, -3, -6)$

So if we travel one unit from the origin along the vector \vec{v} , we will be at point:

Note that the components of a unit vector \vec{v}_{i} are also the direction cosines for any vector that is a multiple

Note that the components of a unit vector
$$\vec{v}$$
, are also the direction cosines for any vector that is a m of \vec{v} ! This tells us that:
$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

$$\vec{v} = (a, b, c) \qquad |\vec{v}| = (a, b, c)$$

Use algebraic vectors (i.e. components) to prove the distributive law for vector addition/scalar multiplication. i.e. prove that $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$

Let
$$\vec{a} = (a_1, a_2, a_3)$$
 and $\vec{b} = (b_1, b_2, b_3)$

$$\begin{array}{l}
k \vec{a} + k \vec{b} \\
= k(a_1, a_2, a_3) + (b_1, b_2, b_3) \\
= k(a_1, a_2, a_3) + (kb_1, b_2, b_3) \\
= k(a_1, b_2, b_3) + (kb_1, b_2, b_3) \\
= (ka_1, ka_2, ka_3) + (kb_1, kb_2, b_3) \\
= (ka_1 + b_1) k(a_2 + b_2) k(a_2 + b_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) k(a_3 + kb_3) k(a_3 + kb_3) \\
= (ka_1 + kb_1) k(a_2 + kb_2) k(a_3 + kb_3) k($$

We define 3 standard unit vectors in the direction of x, y and z axes.

Any algebraic vector can be defined in either component form or in unit vector notation.

Examples

Page 166 #4 - 5, 18

page 172 #2aceh, 3cd, 4ae, 5d, 6-10, 12