Graphing Parabolas of the Form $\boldsymbol{y}=(\boldsymbol{x}-\boldsymbol{h})^{2}$

Equation: $y=(x+2)^{2}$

\mathbf{x}	\mathbf{y}
-4	
-3	
-2	
-1	
0	
1	
2	

Vertex: Zeroes:

Step Pattern:

Direction of Opening:

Equation: $y=(x-1)^{2}$

\mathbf{x}	\mathbf{y}
-3	
-2	
-1	
0	
1	
2	
3	

Vertex:

Step Pattern:

Zeroes:

Direction of Opening:

Summary

The graph of $y=(x-h)^{2}$ is the graph of $y=x^{2}$ \qquad .

The step pattern will be \qquad . The vertex will be at \qquad .

Sketch each graph below without making a table of values.
$y=(x-3)^{2}$

$$
y=(x+4)^{2}
$$

How about combining a couple of transformations? Try to graph the following without making a table of values. Check at least one point on your graph with the equation.
$y=(x-2)^{2}-4$

$$
y=-(x+3)^{2}
$$

Putting it All Together - The Vertex Form of a Parabola

We can combine everything we have learned over the last 3 lessons to graph any quadratic relationship with an equation of the form $y=a(x-h)^{2}+k$.

To graph quadratic equations in this form, start with the graph of $y=x^{2}$ and:
Examples Sketch each of the following. Describe the transformations below the graph.
$y=-(x+1)^{2}+6$

$y=0.5(x-3)^{2}-5$

Why do you think the $y=a(x-h)^{2}+k$ is referred to as vertex form?
$y=3(x-4)^{2}+10$
$y=-(x+4)^{2}-1$
$y=3 x^{2}+12$

Graph the following.

$$
\begin{aligned}
& y=-(x+4)^{2}+5 \\
& y=2(x-1)^{2}-7 \\
& y=-(x-4)^{2}
\end{aligned}
$$

Draw a very rough sketch of the parabola below. State the max/min value, the vertex and the axis of symmetry
$y=-4(x-3)^{2}+2$

