Graphing Parabolas of the Form $y = (x - h)^2$

Equation: $y = (x + 2)^2$

x	У
-4	
-3	
-2	
-1	
0	
1	
2	

Vertex:

Zeroes:

Step Pattern:

Direction of Opening:

Equation: $y = (x - 1)^2$

х	У
-3	
-2	
-1	
0	
1	
2	
3	

Vertex:

Zeroes:

Step Pattern:

Direction of Opening:

Summary

The graph of $y = (x - h)^2$ is the graph of $y = x^2$ _____.

The step pattern will be ______. The vertex will be at ______.

Sketch each graph below without making a table of values.

How about combining a couple of transformations? Try to graph the following without making a table of values. Check at least one point on your graph with the equation.

$$y = (x-2)^2 - 4$$

$$y = -(x+3)^2$$

Putting it All Together – The Vertex Form of a Parabola

We can combine everything we have learned over the last 3 lessons to graph any quadratic relationship with an equation of the form $y = a(x - h)^2 + k$.

To graph quadratic equations in this form, start with the graph of $y = x^2$ and:

Examples Sketch each of the following. Describe the transformations below the graph.

$$y = -(x + 1)^2 + 6$$
 $y = 0.5(x - 3)^2 - 5$

Why do you think the $y = a(x - h)^2 + k$ is referred to as vertex form?

$$y = 3(x - 4)^2 + 10$$
 $y = -(x + 4)^2 - 1$ $y = 3x^2 + 12$

Graph the following.

Draw a very rough sketch of the parabola below. State the max/min value, the vertex and the axis of symmetry.

 $y = -4(x - 3)^2 + 2$

Text page 51 #1, 2, 3a, 4, 6ac