MCV4U

The Dot Product

Today we will define a new operation between 2 vectors – called the dot product. Unlike previous operations with vectors this operation is used for vectors and does not have a similar operation with scalars.

The Dot Product

geometric

The dot product of two vectors \vec{u} and \vec{v} is given by:

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

where θ is the angle between the 2 vectors (tail-to-tail).

The dot product is sometimes called the scalar product or an inner product.

Example Find $\vec{u} \cdot \vec{v}$ if:

a)
$$|\vec{u}| = 7$$
, $|\vec{v}| = 15$ and $\theta = 60^{\circ}$.

b)
$$|\vec{u}| = 13$$
, $|\vec{v}| = 55$ and $\theta = 150^{\circ}$.

$$\vec{u} \cdot \vec{v} = 7(15) \cos 60^{\circ}$$

$$= 7(15)(\frac{1}{2})$$

$$= 105$$

 $\overrightarrow{U} \cdot \overrightarrow{V} = (13)(55) \cos 150^{\circ}$

750

So what does the dot product represent?

-"angular relationship"

-somewhat similar to multiplication

-properties very useful

Prove that two non-zero vectors \vec{u} and \vec{v} are perpendicular if and only if $\vec{u} \cdot \vec{v} = 0$.

What do you get if take the dot product of a vector with itself?

$$\overrightarrow{\times} \cdot \overrightarrow{\times} = |\overrightarrow{\times}||\overrightarrow{\times}| \cos 0$$

$$= |\overrightarrow{\times}|^2$$

The Dot Product for Algebraic Vectors

Let
$$\vec{u} = (a_1, b_1, c_1) \ \text{ and } \vec{v} = (a_2, b_2, c_2).$$

$$\vec{u} \cdot \vec{v} = \alpha_1 \alpha_2 + b_1 b_2 + c_1 c_2$$

Example: Find the dot product between the vectors $\vec{a}=(1,-3,5)$ and $\vec{b}=(-2,0,-4)$.

$$\vec{a} \cdot \vec{b} = 1(-2) + (-3)(0) + 5(-4)$$
 $\vec{a} \cdot \vec{b} = -22$

Find the angle between these 2 vectors.

$$\frac{1}{2} \cdot \frac{1}{6} = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}$$

$$\cos \theta = \frac{-22}{\sqrt{35} \sqrt{20}}$$

$$\sqrt{\left(\frac{7}{1}+(-1)^2+\sqrt{5}\right)^2}\sqrt{\left(-7\right)^2+(-1)^2}$$
 Show that vectors $\vec{a}=(15,0,-3)$ and $\vec{b}=(-1,5,5)$ are perpendicular.

$$\vec{a} \cdot \vec{b} = 15(-1) + 0 - 3(5)$$

Text page 177 #1 -2, 4abc, 5 - 9, 11, 13, 24