Properties of the Dot Product

Similar to vector addition and scalar multiplication, there are many properties that hold true with the dot product.

Commutative

Scalar Multiplication

Distributive

Associative

${ }^{* * *}$ Recall that: $\vec{a} \cdot \vec{a}=|\vec{a}|^{2} \quad$ (from yesterday) ${ }^{* * *}$

The distributive property allows us to "expand and simplify" expressions with the dot product.

Examples

$$
(2 \vec{a}+\vec{b}) \cdot(3 \vec{a}-\vec{b})
$$

$$
(2 \hat{\imath}-\hat{\jmath}) \cdot(3 \hat{\imath}+2 \hat{\jmath})
$$

Expand and evaluate for $|\vec{a}|=3, \mid \overrightarrow{b \mid}=2$ and $\theta=120^{\circ}$.

Two vectors $8 \vec{u}-\vec{v}$ and $4 \vec{u}+3 \vec{v}$ are perpendicular and the magnitude of \vec{v} is twice the magnitude of \vec{u}. Find the angle between vectors \vec{v} and \vec{u}.

