MCV4U ## **The Cross Product** The cross product is an operation that given two vectors \vec{a} and \vec{b} will return a vector that is perpendicular to both \vec{a} and \vec{b} . Hence, the cross product is only defined in 3-space. WHY? The cross product or vector product of $\vec{a}=(a_1,a_2,a_3)$ and $\vec{b}=(b_1,b_2,b_3)$ is given by: $$\vec{a} \times \vec{b} = \left(a_2 b_3 - a_3 b_1, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \right)$$ **Example:** Let $\vec{u}=(1,2,-4)$ and $\vec{v}=(2,-3,1)$. Find $\vec{u}\times\vec{v}$. Verify this new vector is perpendicular to \vec{u} and \vec{v} $$\vec{\nabla} \times \vec{\nabla} = (-10, -9, -7)$$ $$\vec{\nabla} \times \vec{\nabla} = (-10, -9, -7)$$ $$\vec{\nabla} \times (-10, -9, -7)$$ $$\vec{\nabla} \times (-10, -9, -7)$$ $$\vec{\nabla} \times (-10, -9, -7)$$ If \vec{a} and \vec{b} are non-collinear vectors in R³ then every vector that is perpendicular to both \vec{a} and \vec{b} will have the form $k(\vec{a} \times \vec{b})$ for some $k \in R$. We won't prove the above statement. But we can demonstrate that the cross product does in fact produce a vector perpendicular to the two given vectors. Let $\vec{v} = \vec{a} \times \vec{b}$. Verify that \vec{v} is perpendicular to both \vec{a} and \vec{b} . **Example:** Find 3 vectors perpendicular to both $\vec{x} = (8,4,0)$ and $\vec{y} = (-2,1,6)$ $$\frac{240,-48,16}{(17,-74,8)}$$ (17,-74,8) (3,-6,2) How can we express the cross-product geometrically? Direction of cross product is given by a "right-handed system". Wrap fingers from a to b, thumb points in direction of cross product (see page 183-184) Text page 185 #1 - 7