The Cross Product

The cross product is an operation that given two vectors \vec{a} and \vec{b} will return a vector that is perpendicular to both \vec{a} and \vec{b}. Hence, the cross product is only defined in 3 -space. WHY?

The cross product or vector product of $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is given by: $\vec{a} \times \vec{b}=$

Example: Let $\vec{u}=(1,2,-4)$ and $\vec{v}=(2,-3,1)$. Find $\vec{u} \times \vec{v}$. Verify this new vector is perpendicular to \vec{u} and \vec{v}.

If \vec{a} and \vec{b} are non-collinear vectors in R^{3} then every vector that is perpendicular to both \vec{a} and \vec{b} will have the form $\boldsymbol{k}(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{b}})$ for some $\boldsymbol{k} \boldsymbol{\epsilon} \boldsymbol{R}$.

We won't prove the above statement. But we can demonstrate that the cross product does in fact produce a vector perpendicular to the two given vectors. Let $\vec{v}=\vec{a} \times \vec{b}$. Verify that \vec{v} is perpendicular to both \vec{a} and \vec{b}.

Example: Find 3 vectors perpendicular to both $\vec{x}=(8,4,0)$ and $\vec{y}=(-2,1,6)$

How can we express the cross-product geometrically?

Direction of cross product is given by a "right-handed system". Wrap fingers from a to b, thumb points in direction of cross product (see page 183-184)

