Applications of Dot and Cross Products MCV4U

Mathematically, a projection is formed by drawing perpendicular lines from each of the points on one object

The projection of one vector onto another can be pictured as follows.

Proj.
$$\vec{v}$$
 and $\vec{v} = \vec{O}N$

$$|\vec{O}N| = |\vec{V}| |\vec{V}|$$

Example Find the projection of the vector $\vec{v} = (4, -8)$ on the basis vectors \hat{i} and \hat{j} .

$$P(0) = (4,0)$$
 $\hat{j} = (5,0)$
 $\hat{j} = (5,0)$
 $\hat{j} = (5,0)$

WORK

In physics, work is done whenever a force acting on an object causes displacement of that object. Work is defined as the following:

 $W = \vec{F} \cdot \vec{d}$ where \vec{F} is the force acting on an object and \vec{d} is the displacement (movement) of that object.

The unit for work is the Joule (J). Note that $J = N \times m = \frac{kg \times m^2}{s^2}$

Example

A 25-kg box is located 8 m up a ramp inclined at 18° to the horizontal. Determine the work done by the force of gravity as the box slides to the bottom of the ramp.

A force that causes an object to turn is called torque. (Consider using a wrench).

Torque can be calculated using the cross product:

$$\vec{T} = \vec{r} \times \vec{F}$$

$$|\vec{T}| = |\vec{r}||\vec{F}|\sin\theta$$

where: \vec{F} is the applied force, \vec{r} is the vector determined from the lever arm acting from axis of rotation

 θ is the angle between \vec{r} and \vec{F} .

Example: A force of 50 N acting at an angle of 40° at the end of a 19 cm wrench as shown in the diagram below. Calculate the torque on the bolt.

Text page 192 #1a-c, 4, 5, 11, 12, 18