Unit 2 Review Questions

1. Consider the non-zero vectors \vec{a} and \vec{b} such that $|\vec{b}|=2|\vec{a}|$. If $8 \vec{a}-\vec{b}$ and $4 \vec{a}+3 \vec{b}$ are perpendicular vectors, then find the angle between vectors \vec{a} and \vec{b}.
2. Let $\vec{x}=(1,1,0), \vec{y}=(0,-2,-2)$ and $\vec{z}=(1,0,1)$.
a) Find a unit vector perpendicular to \vec{x} and \vec{y}.
b) Are the vectors coplanar?
c) Find the projection of \vec{x} onto \vec{y}.
d) Find the angle between \vec{x} and \vec{y}.
e) Show that there are two methods to calculate $(2 \vec{x}-3 \vec{z}) \cdot(\vec{x}+\vec{z})$

Review problems from the textbook :

Page 194 \#3-12, (get correction for \#11), 14
Page $197 \# 1-2,4,6,7$ (for number $7->$ start by looking at the final answer in the back of the textbook to see where you need to go with your expression and pretend it is a proof)

ANSWERS to \#1 and \#2

1. $120^{\circ} \quad$ 2. a) $\left(\frac{-\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{-\sqrt{3}}{3}\right)$ or $\left(\frac{\sqrt{3}}{3}, \frac{-\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ b) no c) $(0,1 / 2,1 / 2)$ d) 120°
e) answer is -3 (one method is direct substitution, other method is to expand and simplify first.
