The Power Rule

If $y=x^{n}$ then $\frac{d y}{d x}=n x^{n-1}$

Example: If $f(x)=x^{3}$
then $f^{\prime}(x)=$
and
$f^{\prime}(1)=$

We will now prove that for $y=x^{n}$ then $\frac{d y}{d x}=n x^{n-1}$ for all $n \in N$.

How about $n \in I$? (negative values). Does hold. Homework question. Prove later?

Other rules for differentiation...

Constant rule: $\frac{d}{d x}(k)=0$ where k is a constant

Constant multiple rule: If $f(x)=k g(x)$ where k is a constant then $f^{\prime}(x)=k g^{\prime}(x)$.

Sum Rule: If $f(x)=p(x)+q(x)$, then $f^{\prime}(x)=p^{\prime}(x)+q^{\prime}(x)$.

Use the above rules to find the derivative of $f(x)=3 x^{4}-2 x^{2}+9$

Equations of Tangent Lines and Normals

A tangent line touches a curve at only one point. The slope of a tangent line tells us the instantaneous rate of change at that point on the curve.
A normal is the line perpendicular to the tangent line at any given point on the curve.

Example: Let $f(x)=x^{3}-4 x^{2}+7$. Find the equation of tangent line and the normal to the curve at point where $\mathrm{x}=1$.

Example Find the equation of the tangent line to $y=\frac{1}{x^{2}}-\frac{2}{x^{3}}$ at the point where $\mathrm{x}=2$.

Homework: text page 64 \#4acehik, 6 and page 11 \#7cfg, 8, problem 2

Also prove that if $f(x)=x^{-2}$ then $f^{\prime}(x)=\frac{-2}{x^{3}}$ using first principles (from definition of derivative)

