An Algorithm for Curve Sketching

Based on what we have learned so far (including material in Advanced Functions last semester), we can follow the following steps to sketch the graph of any function.

1) Determine any intercepts (provided they are relatively easy to calculate).
2) Determine the end behavior of the function (may provide you with a horizontal asymptote)
3) Determine if any vertical asymptotes exist (if the function is a rational function)
4) Use the first derivative to find all critical points.
5) Find the second derivative, and any locations where it is zero.
6) Use the information from steps 4) and 5) to determine location of all turning points (local maximum and minimum values) and points of inflection.
7) Sketch the function.

Examples

1) $f(x)=x^{3}-x^{2}-x+1$
2) $f(x)=\frac{x}{x^{2}+1}$
3) $f(x)=\frac{x^{3}}{x^{3}+1}$

Assigned Problems

Sketch each of the following.

1) $f(x)=\frac{1}{x^{3}+1}$
2) $f(x)=\frac{x^{2}}{x^{2}+1}$
3) $f(x)=\frac{x^{2}-1}{x^{4}}$
4) $f(x)=\frac{x}{x^{2}-1}$

Example 1

$$
f(x)=x^{3}-x^{2}-x+1
$$

(1) intercepts $f(0)=1 \quad(0,1)$

$$
\begin{aligned}
& 0=x^{3}-x^{2}-x+1 \\
& 0=x^{2}(x-1)-1(x-1) \\
& 0=(x-1)\left(x^{2}-1\right) \\
& 0=(x-1)(x-1)(x+1) \\
& x=1 \text { and } x=-1
\end{aligned}
$$

intercepts: $(1,0),(-1,0)$ and $(0,1)$
(2)

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} x^{3}-x^{2}-x+1=+\infty \\
& \lim _{x \rightarrow-\infty} x^{3}-x^{2}-x+1=-\infty
\end{aligned}
$$

(3) N/A \rightarrow none
(4)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-2 x-1 \\
& f^{\prime}(x)=0 \text { when } 0=3 x^{2}-2 x-1 \\
& 0=(3 x+1)(x-1) \\
& 3 x+1=0, \quad x-1=0 \\
& x=-1 / 3 \quad x=1
\end{aligned}
$$

$$
f\left(-\frac{1}{3}\right)=\frac{32}{27} \text { or } 1 \frac{5}{27} \quad f(1)=0
$$

\therefore critical points at $\left(-\frac{1}{3}, \frac{32}{27}\right)$ and $(1,0)$.
(5)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-2 x-1 \\
& f^{\prime \prime}(x)=6 x-2 \\
& f^{\prime \prime}(x)=0 \rightarrow 0=6 x-2 \quad f\left(\frac{1}{3}\right)=\frac{16}{27} \\
& \\
& \quad 6 x=2 \\
& \\
& \quad x=1 / 3
\end{aligned}
$$

(6) $: 0\left(-\frac{1}{3}, \frac{32}{27}\right)$ and $(1,0)$ are both turning points.
(since ad derivative only zero at $x=\frac{1}{3}$)
$\left(\frac{1}{3}, 16 / 27\right)$ is a point of inflection.
(7)

note that

$$
\begin{aligned}
f^{\prime \prime}(1) & =6(1)-2 \\
& =4 \\
& >0
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime \prime}\left(-\frac{1}{3}\right) & =6\left(-\frac{1}{3}\right)-2 \\
& =-4 \\
& <0
\end{aligned}
$$

Example 2

$$
f(x)=\frac{x}{x^{2}+1}
$$

(1) intecrepts $f(0)=0 \quad(0,0)$
(2) $\lim _{x \rightarrow+\infty} \frac{x}{x^{2}+1}=0^{+}$

$$
\lim _{x \rightarrow-\infty} \frac{x}{x^{2}+1}=0^{-}
$$

(3) no vertical asymptotes since $x^{2}+1 \neq 0$
(4)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(1)\left(x^{2}+1\right)-x(2 x)}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=0 \rightarrow-x^{2}+1=0 \quad f(1)=\frac{1}{2} \\
& \quad x^{2}=1 \quad f(-1)=-\frac{1}{2} \\
& x= \pm 1
\end{aligned}
$$

(5)

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)^{2}-\left(-x^{2}+1\right)(2)\left(x^{2}+1\right)(2 x)}{\left(x^{2}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)^{2}-4 x\left(-x^{2}+1\right)\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)\left(\left(x^{2}+1\right)+2\left(-x^{2}+1\right)\right)}{\left(x^{2}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)\left(-x^{2}+3\right)}{\left(x^{2}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(-x^{2}+3\right)}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

$f^{\prime \prime}(x)=0$ wher $x=0$ and $-x^{2}+3=0$

$$
\begin{aligned}
& x^{2}=3 \\
& x= \pm \sqrt{3}
\end{aligned}
$$

$$
f(0)=0 \quad f(\sqrt{3})=\frac{\sqrt{3}}{4} \quad f(-\sqrt{3})=\frac{-\sqrt{3}}{4}
$$

(6) $80\left(1, \frac{1}{2}\right)$ and $\left(-1,-\frac{1}{2}\right)$ are turning points and $(0,0)(\sqrt{3}, \sqrt{3} / 4)$ and $(-\sqrt{3},-\sqrt{3} / 4)$ are points of inflection
(7)

Example $3 \quad f(x)=\frac{x^{3}}{x^{3}+1}$
(1) $f(0)=0$ conly intercept)
(2) $\lim _{x \rightarrow+\infty} \frac{x^{3}}{x^{3}+1}=1^{-}$

$$
\begin{aligned}
& x \rightarrow+\infty \quad x^{2}+1 \\
& \lim _{x \rightarrow \infty} \frac{x^{3}}{x^{3}+1}=1^{+} \quad \therefore y=1 \text { a horizantal } \\
& \text { asyupptete. }
\end{aligned}
$$

(3) vertical asyaptote at $x=-1$
(4)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{3 x^{2}\left(x^{3}+1\right)-x^{3}\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{3 x^{5}+3 x^{2}-3 x^{5}}{\left(x^{3}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{3 x^{2}}{\left(x^{3}+1\right)^{2}} \quad f^{\prime}(x)=0 \rightarrow x=0
\end{aligned}
$$

only critioal point at $(0,0)$.
(5) $f^{\prime \prime}(x)=\frac{6 x\left(x^{3}+1\right)^{2}-3 x^{2}(2)\left(x^{3}+1\right)\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{4}}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{6 x\left(x^{3}+1\right)^{2}-18 x^{4}\left(x^{3}+1\right)}{\left(x^{3}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{6 x\left(x^{3}+1\right)\left(x^{3}+1-3 x^{3}\right)}{\left(x^{3}+1\right)^{4}} \\
& f^{\prime \prime}(x)=\frac{6 x\left(1-2 x^{3}\right)}{\left(x^{3}+1\right)^{3}}
\end{aligned}
$$

$$
\begin{array}{rlrl}
f^{\prime \prime}(x)=0 & \text { at } x=0 & \text { and } & \left(1-2 x^{3}\right)=0 \\
f(0)=0 & & 2 x^{3}=1 \\
f\left(\frac{1}{\sqrt[3]{2}}\right)=\frac{\frac{1}{2}}{\frac{1}{2}+1} & & x^{3}=\frac{1}{2} \\
& & & x=\sqrt[3]{\frac{1}{2}} \\
& & & x=\frac{1}{\frac{3}{2}}=\frac{1}{2} * \frac{2}{3} \\
& =\frac{1}{3} & &
\end{array}
$$

(6) $\therefore\left(\frac{1}{\sqrt[3]{2}}, \frac{1}{3}\right)$ is a point of inflection.
but $f^{\prime}(0)=f^{\prime \prime}(0)=0$ so and denvatie test fails!

Need to five out what is gould on at $(0,0)$.

