## Rational (aka "Fraction") Exponents

| 2 <sup>-3</sup> |    |
|-----------------|----|
| 2 <sup>-2</sup> |    |
| 2 <sup>-1</sup> |    |
| 2 <sup>0</sup>  | 1  |
|                 |    |
| 2 <sup>1</sup>  | 2  |
| 2 <sup>2</sup>  | 4  |
| 2 <sup>3</sup>  | 8  |
| 24              | 16 |

| 9-              |    |
|-----------------|----|
| 9 <sup>-1</sup> |    |
| 9 <sup>0</sup>  | 1  |
|                 |    |
| 91              | 9  |
| 9 <sup>2</sup>  | 81 |

| 4-2             |    |
|-----------------|----|
| 4 <sup>-1</sup> |    |
| 4 <sup>0</sup>  | 1  |
|                 |    |
| 4 <sup>1</sup>  | 4  |
| 4 <sup>2</sup>  | 16 |

In general 
$$a^{\frac{1}{2}} =$$
  
But what about  $9^{\frac{1}{3}}$ ? And  $2^{\frac{1}{4}}$  and so on?

Exponent laws can help as well.

$$4^{\frac{1}{2}} \times 4^{\frac{1}{2}} =$$

$$5^{\frac{1}{2}} \times 5^{\frac{1}{2}} =$$

$$8^{\frac{1}{3}} \times 8^{\frac{1}{3}} \times 8^{\frac{1}{3}} =$$

$$32^{\frac{1}{5}} \times 32^{\frac{1}{5}} \times 32^{\frac{1}{5}} \times 32^{\frac{1}{5}} \times 32^{\frac{1}{5}} \times 32^{\frac{1}{5}} =$$

In general:  $a^{\frac{1}{n}} =$ 

**Examples:** Evaluate the following:

| 1                   | 1   | 1        | 1                   |
|---------------------|-----|----------|---------------------|
| -                   | —   | -        |                     |
| $81^{\overline{2}}$ | 164 | $25^{3}$ | $16^{-\frac{1}{2}}$ |

How might we evaluate the following?

$$81^{\frac{3}{4}}$$
  $8^{\frac{2}{3}}$ 

In general: 
$$a^{\frac{m}{n}} =$$

## More examples.

Evaluate each of the following:





 $25^{\frac{3}{2}}$ 

$$(-27)^{\frac{2}{3}}$$