Properties of Exponential Functions

Part A - Linear Relationships

Complete a table of values, and graph each relationship below.

first differences

	_	7	
V	_	1	Х

first	differency	y = -2x +	4
-------	------------	-----------	---

X	У	
-2	-4	-
-1	~2	1
0	0	1
1	2	1
2	4	1

1		
	У	Х
>-2	8	-2
3-2	6	-1
5-2	4	0
7-7	2	1
1-1	0	2

Do you notice a pattern in the table of values?

First differences are equal.

Part B - Quadratic Functions

 $y = 2x^2$

first diff.

Х	У	and differences
-2	8	1
-1	2	>-2-6-6)=4
0	0	74
1	2	3 >4
2	8	6

 $y = x^2 - 2x - 3$

x y / And difference of the state of the sta

Do you notice a pattern in the table of values?

Se cond differences are all equal.

Part C – Exponential Relationships

$$y = 2^{X}$$

Х	У
-2	1/4
-1	1/2
0	1
1	2
2	4

X	У
-2	1/9
-1	3
0	1
1	3
2	9

$$y = 0.5^{x}$$

Х	У
-2	4
-1	2
0	1
1	0.5
2	0.25

Do you notice a pattern in the table of values?

constant multiplier or constant ratio.

Summarize your findings below...

Type of Relationship	What does the equation look like?	What does the graph look like?	Pattern found in the table of values.
Linear	yzmxtb.	straight line	first difference are all equal.
Quadratic	x2"in it	Parabola	second difference are all equal.
Exponential	x is in the exponent place	for Cy	Constant "multiplier".

Sample Problems

1. Suppose the population of a town is shown below. Does this represent a linear, quadratic of exponential relationship?

1320

Population 1200 1320 1452 1597						1 100
1 7 1 7 1952	Population	1200	1320	1452	1597	
			(7)	A	7	1452

P= 1200 (1-1)

2. A polygon is any 2-dimensional closed shape. Several polygons are drawn and the number of diagonals are found and recorded. Is this a linear, exponential or quadratic relationship? quadratic - 2nd différences ac equal

Number of Side in Polygon	Sketch	Number of Diagonals
3		0
4	\bowtie	2
5		5
6		9
7		14
8		20

3. The population of a school is currently 850 students. The school grows by 25 students each year. Is the growth of the school linear, exponential or quadratic? Find an equation if possible.

> inear goes up some amount. P= 850+25n.