Symmetric and Scalar Equations of Lines

Symmetric Equation of a Line

Rearrange the parametric equation of a line to solve for t. The resulting equation is called a symmetric equation of a line.

Example Find the vector, parametric and symmetric equations for the line through the points $\mathrm{P}(4,-1,3)$ and $Q(12,-5,1)$.

Example Find the symmetric equation for the line with vector equation $(x, y, z)=(1,2,3)+t(1,0,-2)$

Example - Find the vector equation of the line with symmetric equation:
$\frac{x-1}{3}=y+5=\frac{z+3}{-4}$

What angle would the line above make with the line: $x=1+4 t, z=1-2 t, z=3$?

To define the scalar equation of a line we must first define a normal to a line. Any vector that is perpendicular to a line is a called a normal vector, or often simply a normal to the line.

Find the normal to the line in the example above.

Find two normals to the line given by $\vec{r}=(1,5)+t(3,5)$

In general we would tend choose normals that have integer components as small as possible.

Scalar (or Cartesian) Equation

Consider a line with a direction vector of $\vec{d}=(-2,5)$ and point $(1,3)$. We can use the normal to define a new equation (called the scalar or Cartesian equation).

In general a scalar or Cartesian equation of a straight line in 2-space has the form:
$A x+B y+C=0$

Example: Find the scalar equation of a line with normal $(-3,2)$ that passes through the point $(-3,-7)$

How about a scalar equation in 3-space?

Assigned Work

Text section 8.3 (page 449) \#1bd, 5, 6, 9, 10c Text section 8.2 (page 443) \#7, 8, 9b, 10a

