So far you are familiar with finding the equation of a line on the Cartesian plane. You may have found this equation in the form: $y=m x+b$ or (slope y-intercept form)

The equation of a line can be found if we have the slope (direction of the line) and a point (position of the line).

The same method can be used to develop an equation for a line in \mathfrak{R}^{2} by finding:

1) A point on the line - expressed as a position vector.
2) A vector in the direction of the line - a direction vector.

Suppose that a line in \mathfrak{R}^{2} has the point $\left(x_{0}, y_{0}\right)$ and has the same direction as the vector $\vec{d}=(a, b)$ then the vector equation of the line is given by:

Example: Find the vector equation of the line passing through points $P(-1,1)$ and $Q(5,5)$. Then, find the coordinates of 2 other points on the line.

Every value of t specifies on point on the line. Conversely, for every point on the line, there is only one value of t.

We can rearrange the vector equation of line to express it as a parametric equation:

Example Find the x and y-intercepts for the line given by the vector equation $\vec{r}=(3,2)+t(1,-2)$.

Using vector and parametric equations allows us to talk about lines in 3-pace $\left(R^{3}\right)$

The vector equation of a straight line in space is given by:
$\vec{r}=(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+t(a, b, c)$
Where $\vec{d}=(a, b, c)$ is a direction vector for the line (a, b and c are direction numbers)
$t \in R$
$\left(x_{0}, y_{0}, z_{0}\right)$ is a the position vector of a particular point on the line.
$\vec{r}=(x, y, z)$ is a the position vector for any point on the line.

The parametric equations of a straight line in space are given by:
$x=x_{0}+a t$
$y=y_{0}+b t$
$z=z_{0}+c t$
Where $\left(x_{0}, y_{0}, z_{0}\right)$ is a particular point on the line
$t \in R$
a,b and c are the direction numbers for the line.

Example: Find vector, parametric and symmetric equations of the line that passes through points $A(1,-3,5)$ and $B(9,1,5)$. Find another point on this line as well.

Example Find an equation for the line that is perpendicular the $x y$-plane and going through the point (5, 4, -5).

Example Do the equations below represent the same line?
$x=5+2 s, y=-4-5 s, z=-1+3 s$
$\vec{r}=(-1,11,-4)+t(-4,10,-6)$

Online text Section 8.1 (page 433) \#1, 2, 3ab, 4

Section 8.2 (page 449) \#1ace, 3, 10ab

