Planes are flat 2-D surfaces. The Cartesian (xy-plane) is an example of a plane. We often draw planes as parallelograms on a flat surface, even though the planes extend in all directions.

Using a vector equation of a line, we define a line by establishing position on a line (initial point) then adding a scalar multiple of a direction vector to arrive at new points. We can define a plane using a vector equation similar to a line.

The vector equation of a plane is given by:
$(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+t\left(a_{1}, b_{1}, c_{1}\right)+s\left(a_{2}, b_{2}, c_{2}\right) \quad$ where $s, t \in R$.

We then can define parametric equations of plane of the form:
$x=x_{0}+s a_{1}+t a_{2}$
$y=y_{0}+s b_{1}+t b_{2}$
$z=z_{0}+s c_{1}+t c_{2}$
where $s, t \in R$.

Any three non-collinear points define a plane.

Find the vector and parametric equations of the plane formed by the points $A(1,2,3), B(4,5,-3)$ and $C(0,0,6)$.

Does the point $(-7,3,-1)$ lie in the plane formed above?

Find the equation of a plane that containing two intersecting lines: $\vec{r}_{1}=(4,7,3)+t(1,4,3)$ and $\vec{r}_{2}=$ $(-1,-4,6)+s(-1,-1,3)$

Find the equation of the plane containing the lines $\frac{x-3}{2}=\frac{y}{-3}=\frac{z+4}{3}$ and $x=2 t, y=-3 t+5, \quad z=3 t-1$.

Instead of using 2 direction vectors to "establish a direction for our plane" we could use the normal to the plane.

Example Find a normal to the plane $\vec{r}=(1,2,9)+t(-1,0,1)+s(1,-3,4)$.

Is the normal unique?

The normal to a plane will be perpendicular to any vector in the plane. We can use this fact to derive the scalar equation to a plane.

Let $P(x, y, z)$ be any point in the plane with normal (A, B, C). Let $Q\left(x_{0}, y_{0}, z_{0}\right)$ be a particular point (given point) in the plane.

What is the scalar equation for the plane from the example on the previous page?

The scalar equation is unique.

Example: Find the scalar equation of the plane containing the 3 points $A(1,1,1), B(2,0,-1)$ and $C(0,-1,4)$.

Example: Find the scalar equation of the plane containing the point $(4,3,-2)$ and is parallel to the xz-plane.

