Intersection of a Line and a Plane

Start by considering the geometric possibilities for the intersection of a line and a plane.

Example 1 line: $\frac{x-1}{2}=\frac{y+6}{3}=\frac{z+5}{2}$ and plane: $4 x-2 y+z-19=0$.

Example 2

line: $\vec{r}=(0,1,-4)+(2,-1,1) t$ and plane: $\mathrm{x}+4 \mathrm{y}+2 \mathrm{z}-4=0$

Example 3

line: $(3+14 s,-2-5 s, 1-3 s)$ and plane: $\mathrm{x}+\mathrm{y}+3 \mathrm{z}-4=0$

Intersection of Two Planes

Start by considering the geometric possibilities for the intersection of 2 planes. Include specific properties of each plane that would help you determine the scenario.

Example 1

Find the point of intersection of the planes $2 x-2 y+5 z+10=0$ and $2 x+y-4 z+7=0$.

Example 2

Find the intersection between the planes $x+y+z-1=0$ and $2 x-3 y-z+2=0$

Example 3

Solve the system of equations below:
$x+4 y-3 z+6=0$
$2 x+8 y-6 z-9=0$

Example 4

Find the point of intersection between the planes $3 x-5 y-z+2=0$ and $9 x-15 y-3 z+6=0$

