Introduction to Annuities

Warmup Problem

Suppose Ben has \$5000 in his savings account. It collects interest at 2.5%/a compounded monthly. How much will Ben have in exactly one year towards the purchase of a vehicle?

$$A = P(1+i)^{n}$$

$$A = 5000 (1 + \frac{025}{12})^{12}$$

$$= 5126.44$$

Consider this situation:

Ben wants to save money to purchase a new vehicle. At the end of every month, he deposits \$450 into a savings account that collects interest at 2.5%/a compounded monthly. How much will Ben have in his account after 12 months?

An annuity is a series of payments made at regular intervals. (For a simple annuity the compounding periods and payment periods are equal).

Month	Deposit	
1	\$450	>> 450 (1+-025) -> \$46042
2	\$450	-> 450(1+·025)0-> \$459.46
3	\$450	-> 450(1+.025)9
4	\$450	>> 450 (1+ · ors) 8
5	\$450	-> 450(1+.025)
6	\$450	750 (1+.075)65
7	\$450	-> 450(1+·025)
8	\$450	-> 450(1+ ·025) Y
9	\$450	9 4/50 (1 + · OLS)
10	\$450	> 450 (1+ ·025)2
11	\$450	-> 450 C(+ · ors)1
12	\$450	>> \$450

Final Value of Ben's Savings: \$5462.31

Thankfully, there is a formula that can be used to determine the final value of a simple annuity such as the one above.

$$FV = \frac{R[(1+i)^n - 1]}{i}$$

FV is the future value of the annuity

R is the regular payment

i is the interest rate (per compounding period)

n is the number of payments.

FVi =
$$RC(1+i)^n-1$$

 $R = FVi$
 $C(1+i)^n-1$

To calculate the final value of Ben's annuity we could use this formula with:

$$FV = 450 \left[\left(1 + \frac{.025}{12} \right)^{12} - 1 \right]$$

Example

In order to save for her own college education, Rachel's grandparents provide her with a gift of \$1000 on her birthday. Rachel invests this money at 2.1%/a compounded annually. How much will she have

$$FV = R[(1+i)^{n}-1]$$

$$= 1000[(1+.021)^{18}-1]$$

$$= 021$$

$$= $21602.94$$

Example

Gary is 35 years old and starts saving for retirement. He is paid biweekly and \$100 from each paycheque is deposited into an RRSP that pays 3%/a compounded bi-weekly. How much money will he have if he wants to retire at age 60? How much interest would he earn?

30%

Bi-weekly = every other week

RRSP = registered retirement savings plan

Kari wishes to backpack around Europe in 3 years. She has decided that she needs \$5000 in savings to do this. She has decided to contribute to a savings account every month. The savings account pays interest at 1.75%/a compounded monthly. How much does she need to deposit in the savings account every month?

$$R = \frac{FVi}{[(1+i)^{n}-1]}$$

$$R = \frac{5000(\frac{.0175}{12})}{[(1+\frac{.0175}{12})^{36}-1]}$$

$$R = \frac{135-38}{}$$

TVM Solver

In regular life, most individuals do not use this formula. One option is to search and use a TVM solver (Time Value of Money)

Use a TVM Solver to answer the following:

1) For 4 years you put \$20 a week into a savings account that pays 3.25% interest. What would the final value of this annuity be? How much interest would you have earned?

$$4 \times 52 = 208$$
 $= 4441.03 = 4441.03$
 $= 420 \times 208$
 $= 4281.03$

2) Mr. Elliott wants to have one million dollars saved. He will make monthly payments for the next 20 years to achieve this goal. The money will collect interest at 2%/a compounded monthly. How much does he need to save each month?