Assignment: Derivatives of Exponential and Logarithmic Functions

Each problem is worth 10 marks.

Due date: Email to Mr. Elliott by Tuesday June $23^{\text {rd }}$ at noon. No late assignments can be

 accepted.1. Find the derivative of each of the following functions.
a) $f(x)=2 x e^{3 x-1}$
b) $y=2^{4 x+1}$
c) $f(x)=2 x^{2} \ln \left(x^{2}-1\right)$
d) $y=2 \log _{3}(5 x+1)$
2. a) Determine the coordinates of all point(s) on the graph of $y=2 x \ln x$ where the tangent line is perpendicular to the line $x+4 y-7=0$.
b) Find the equation of the tangent line to the graph of $f(x)=x e^{x}+e^{x}+1$ at the point where $\mathrm{x}=$ 1.
3. Sketch function $f(x)=\frac{\ln x}{x}$ by finding all asymptotes, turning points, points of inflection and end behavior. (Find exact location of any turning points and points of inflection).
4. The population of a town can be modelled by the exponential equation $P(n)=12000(1.02)^{n-2015}$, where $\mathrm{P}(\mathrm{n})$ is the population of the town and n is the year.
a) According to the model, in what year will the population of the town reach 200000 ?
b) Use the model to estimate the town's population in the year 2025.
c) Find an approximate value for $P^{\prime}(2025)$ and interpret its meaning (include units).
